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FIGURE 6.11 Efficiency of circumferential rectangular fins

Considering a fin of rectangular cross section, insulated at its end, we can write:

_ tan k(m-L)
- m-L
h-P 2w+ 2:4)
Now, L= [ L = L
o m Vk-Af J kwt

For a very wide fin: i.e, w >> t, we can write:

3
2hw 24 2h >
L= (T2 = (2R (20 g2
" \/k-w-t V ke Jk-t-L
3
ie. mL= |22 {6.19)
\Jk.Am A

where, A, = (L.t), is the profile area for the rectangular section. So, on the X-axis, instead of (m.L), what is plotted
is:

h
kA,
where, L_ is the corrected length, to take into account convection from the end.

6.4.2 Fin Effectiveness (c,)

Consider a fin of uniform cross-sectional area A,, fixed to a base surface. Purpose of the fin is to enhance the heat
transfer. If the fin were not there, heat would have been transferred from the base area A, by convection. By
attaching the fin, area for convection increases i.e. convective resistance ( = 1/(h.A)} decreases; however, it is
obvious that a conduction resistance due to the solid fin is now introduced and the total heat transfer would
depend upon the net thermal resistance. As we go on increasing the length of fin, convection resistance will go
on decreasing, but conduction resistance will go on increasing. This means that attaching a fin may not
necessarily result in effectively increasing the heat transfer. Therefore, how effective the fin is in enhancing the
heat transfer is characterised by a parameter cailed fin effectiveness. '

3
12
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" Fin effectiveness is defined as the ratio of the heat transfer rate with the fin in place, to the heat transfer that
would occur if the fin were not there, from the area of the base surface where the fin was originally fixed.

ie. g¢ = {heat transfer rate with fin)/ (heat transfer rate without fin)

; Qein
ie Ep= —— e (6,20
1™ AT, T (620
Fin effectiveness equal to 1 means that there is no enhancement of heat transfer at all by using the fin; if the
fin effectiveness is less than 1, that means that the fin actually reduces the heat transfer by adding additional
thermal resistance! Obviously, & should be as large as possible. Use of fins is hardly justified unless fin
effectiveness is greater than about 2, i.e. & 2 2.
To get an insight into the physical implications of fin effectiveness, let us consider an infinitely long fin:

Then, we have:
e JPEAAT, -T))
T RAAT,-T,

{firr effectiveness for very long fin)

kP
A,

Eq. 6.21 is an important equation. Following significant conclusions may be derived from this equation:

(i) Thermal conductivity, k should be as high as possible; that is why we see that generally, fins are made up
of copper or aluminium. Of course, aluminium is the preferred material from cost and weight
considerations.

(ii) Large ratio of perimeter to area of cross section is desirable; that means, thin, closely spaced fins are
preferable. However, fins should not be too close as to impede the flow of fluid by convection.

(iti) Fins are justified when heat transfer coefficient k is small, ie. generally on the gas side of a heat
exchanger rather than on the liquid side. For example, the car radiator has fins on the outside of the tubes
across which air flows. .

(iv) Requirement that & 2 2, gives us the criterion:

ie. £ = (6.21)

kP {6.22)
kA,
These two important parameters, namely, 77, and & are related to each other as follows:
o= Sin _ Qfin _ npheAr T, - To)
! Coase AT, - Tp) hAATy —Ty)
A
ie. e=-Lon {6.23)
C

6.4.3 Thermal Resistance of a Fin

Consider a fin of cross-sectional area A, fixed on a base surface. Then, the convective thermal resistance of the
base area is:

Ry = h}‘l ((6.24a)...convective thermal resistance of base area)
e
When fin is attached, we compute a thermal resistance for the fin, from the usual definition, i.e.
AT _T,-T,

Ren = == {(6.24b)...thermal resistance of fin)
Qfin  Qéin

Values of Q5 depend on the conditions at the tip of the fin and may be obtained from Table 6.3. Dividing
equation 6.24a by Eq. 6.24b, we get:

Ry in.n . .
=—0>>l _ =¢ ((6.25)...from the definition of £;in Eqn. 6.20)
Ryn HAAT,-Ty 7 4
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Fin effectiveness may be considered as a ratio of thermal resistances and clearly, to achieve higher fin effec-
tiveness, the conductive resistance of the fin must be smaller than the convective resistance, calculated with
reference to the base cross-sectional area.

Concept of fin resistance is very useful to represent a finned surface in a thermal circuit, remembering that
the conductive resistance along the fin and the convective resistance from the surface of the fin are in parallel.

6.4.4 Total Surface Efficiency (or, overall surface efficiency, or area-weighted fin
efficiency), n,

What we have analysed so far, is a single fin. However, in practice, a single fin is seldom used; it is always an

array of fins fixed on a base surface.

In a heat exchanger, where use of fins is most prevalent, fins serve the purpose of increasing the amount of
heat transferred.

Total heat exchange area (A,) may be considered as made up of two areas:

(i) the base or prime surface area, AP, on which there are no fins, and
(ii} the total fin surface area (N .Af)
where, N is the total number of fins, and Af is the surface area of each fin.

Now, the prime surface (or, un-finned surface) is 100% effective; but, all the fin surface area provided is not
100% effective, since there is always a temperature gradient along the fin. From the definition of fin efficiency, we
know that effective area of the fin surface is 7. Ay

Therefore, considering the total area of the array, ie. (A, + N.A g, we can define an total or overall surface
efficiency, #,, such that:

Mrdy=1-A,+ n-N-Ay

But A=A, + N-A
Therefore, 7y =(A-N-A)+ N A
) N Ay
ie. m=1-—2L1-7) .(6.26)
A

Eq. 6.26 gives the value of overall or total surface efficiency (or, area ~weighted fin efficiency) for a fin array.
In other words, effective heat transfer area of the array is = {1, A,), where 4, is the total area of the prime surface
plus all the fin area.

Concept of overall surface efficiency is very useful in calculating the heat transfer rates in heat exchangers
where fins may be provided on one or both sides of the wall. In such a case, overall heat transfer coefficient may
be obtained from:

1
U, A, =U-A=—
] 0 ZR
U,A,=U-A = ! (627}
ho Mg Ag + Ry + 1M b;
where, U, = overall heat transfer coefficient based on total outer surface area

LI; = overall heat transfer coefficient based on total inner surface area
A, = total outer surface area
A; = total inner surface area
7, = total surface efficiency for outer surface
fy; = total surface efficiency for inner surface
h, = average heat transfer coefficient on the outer surface
h; = average heat transfer coefficient on the inner surface
For the popular case of a tubular heat exchanger, with fins on the outside and no fins on the inside, we have:

In [I‘-’-J
"
2.mkL

where, r; and 7, are inside and outside radii of the tube, k is the thermal conductivity of tube material and L is the
tube length.

i = 1 Ai =2 Jl'-?‘:-‘L and: Rwall =
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Exomple 6.7. A steel rod (k = 30 W/(mC)), 10 mm in diameter and 50 mm long, with an insulated end is to be used as a
spine. It is exposed to surroundings with a temperature of 65°C and a heat transfer coefficient of 50 W/ {m’C). The
temperature of the base is 98°C. Determine: .

(i) fin efficiency (ii) temperature at the end of spine, and (iii) heat dissipation. M.U]
Solwtion. See Fig. Example 6.7.

h = 50 Wi(m’C)

T,=98°C k = 30 W/(mC)
T, =65C i
—»Ql D=001m

(dTidx),, =0

L=0.08m

> X

FIGURE Exomple 6.7 Fin of finite length, end insulated

Data:

D=00lm L:=005m Kk:=30W/(mC} T,=98C T,=65°C k:=50 W/(m*()
Fin efficiency:
Fin efficiency for a fin with insulated end is given by Eq. 6.18:

him
ie. = % ((6.18)...fin efficiency for a fin with insulated end)
First, let us calculate the parameter m:
h-P ; . . .
We have: m= H where, P is the perimeter and A, is the area of cross section.
D .

Then, A= s " (define the area of cross section of the rod)
ie. A, =7.854 x 107° m? {area of cross section of the rod)
and, P:=mDm (define the perimeter of the rod)
ie P =003l m (perimeter of the rod)

P . '

Therefore, m: = ?A—r m (define the parameter m.)
ie. m = 2582 m™ (parameter m.)

Therefore, from Eq. 6.18:

__ tank{mL}
7 m-L
ie. 7y = 0.666 = 66.6% (fin efficiency.)

Temperature at the end of the spine, ie. at x = L:
We use Eq. 6.7 for the temperature distribution in a fin with insulated tip:
T(xy-T, coshi{m(L-x))

= (6.7
e T,-T, cos h(m-L) (6.7}
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Putting x = L in Eq. 6.7, we get:
T-T. _ 1
T,-T,  cosh{mL)

T:: - Ta
——— +T,
cos h(m-L)
i.e. T, = 81.874°C (temperature at the end of the spine.)
Heat dissipation from the spine:
We use Eq. 6.8 for heat dissipation from a fin with insulated end:

i.e. T =

ie. Qun = JHPKA, - 6, tan h(m-L) {6.9)

Here, 8:=T-T,°C {excess temperature at the base of fin)
ie g, =33°C (excess temperature at the base of fin)
And, Qg = R PkA, -6, -tanh(m-L) W (define heat transfer from the fin)
ie. Qun = 1725 W (heat dissipated from the spine.

Example 6.8. Circular aluminium fins of constant rectangular profile are attached to a tube of outside diameter D =5
cm. The fins have thickness { = 2 mm, height L = 15 mm, thermal conductivity k = 200 W/(mC), and spacing 8 mum (i.e.
125 fins per metre length of tube). The tube surface is maintained at a uniform temperature T, = 180°C, and the fins
dissipate heat by convection into the ambient air at T, = 25°C, with a heat transfer coefficient h, = 50 W/ (m?C).
Determine the net heat transfer per metre length of tube. .

Solution, See Fig. Example 6.8.

Tube
T,=180°C r,=0025m
1
' i Fins, 125 nos./m, k = 200 W/(mC) r,=0.04m
! e
1
" ': 2 L=0.015m
' ] t=0.002m h, = 50 Wi(m“C)
) : * T,=25°C
'
1
i
Pl | e——

:

2

FIGURE Example 6.8 Circular fin of redongulor seciion

D:=005m L:=0015m r=0025m ry = 0.040 m = 0.002 m k := 200 W/(mC)})

T,=180C T,:==25C h,:=30W/(mC) N:=125

This is the case of heat transfer in a fin array. So, we will use ‘total surface efficiency’ concept. First, let us find out
the fin parameter m: (See Table 6.4}

’ h -
We have: "= k’;: where, P is the perimeter and A, is the area of cross section.
But, Ll = E for thin fins
At
2k, 4
Therefore, mi= |- m (define parameter m)
ie m = 15811 m! ' (parameter m.)
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Fin efficiency:
Fin efficiency for circular fins is obtained from graphs in Fig. 6.11. To use those graphs, we need to calculate the follow-
ing: :

t

Fa i= ¥y + 3 m (define corrected radius)

ie. e = 0.041 m (corrected radius)

L=L+ % m (define corrected length)

ie. L,= 0016 m {corrected length for fin)
and, L =1291

kt{r, —n)
Therefore, 2. Pk 0.261 (factor to be used on X-axis of Fig. 6.11)
kt(r, - x)
and, e - 164 (factor for use in Fig. 6.11}

n
Now, with the value of 0.261 enter the X-axis of Fig. 6.11. See where the ordinate cuts the curve for r,./r, = 1.64.
Move to the left and read on the Y-axis the value of 7.
From the Fig. 6.11 we read: 7= 097 = 97% {fin efficiency.)
Alternatively:
From Table 6.4, we have:
For circular fins of rectangular section:

m
1y, ry, vy = (r2 rz)
1

2c T

..deftne hf as a function of m, ry and ry

[ (ko r ) (o) = hmer ) Ky (mens ) }
(o(mn)-K (m-1 ) + Ky (men )1 (mery, )

In the present case, m := 15811 r,:=0.025 ry; = 0.041
therefore, np(m, r, rp} = 0.973 (fin efficiency...almost same as obtained from the graph)
(Note the ease with which Mathcad calculates the Bessel functions in the above equation.)
Total surface efficiency:
This is given by Eq. 6.26:

. N-A,

ie. =1~ T’-(l -1 ..(6.26)
+

where Np= 0973 as already calculated.

Surface area of each fin:

Ap=2m (rzzr - r,z) m? {factor 2 is used to consider both upper and lower areas of the fin)
ie, Ap=6.635 x 107 m? {surface area of each fin)
Prime {(or base) surface area: (This is unfinned area)

Ay=2mr(1-Nf} m’ (prime surface area for 1 m length of tube)
ie. A, = 0118 m? (prime surface area per metre length of tube)
Therefore, total area:

A=A+ N.‘:‘f m? (prime area plus tolal fin area)
ie. A, = 1947 m (total areq)

Applying Eq. 6.26:

N-A;

n,=1- {1-7y {define total surface efficiency)

+
ie. n, = 0.976 (total surface efficiency)
Heat transfer rate for the fin array:
Therefore, heat transfer rate is given by:
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Qi=h, 7 A (T,-T)W/m _ (define total heat transfer rate in the fin array)
Le. Q = 7.167 x 10° W/m = 7.167 kW/m (heat transfer rate.)
Alternatively:

You need not memorize the Eq. 6.26 for the total surface efficiency. Just remember that prime surface is 100% effective,
whereas out of the total fin area of (N.A), only (1. N. Ay} is effective. So, the total heat transfer from the fin array can be
written as:

Q:=(A,+ 7, N-Af) AT, -T)W (define heaf transfer rate from the array)
ie. Q=7167 x 10° W/m (same as obtained above.)
Heat transfer rate if there are no fins:

It is interesting to compare the heat transfer rate obtained above, with the heat transfer rate that would be obtained if
there were no fins:

If there are no fins, heat transfer will be by convection from the surface of the bare tube. Applying Newton’s Law of
Cooling, we get:

Oupe = 2 mr 1T, - Ty W (define heat transfer by convection from tube sutface)
ie. Qupe = 1217 x 100 W (heat transfer rate from the bare tube)
We get: L . 5.887
Qtuhe

i.e. heat transfer increases by nearly 6 times because of addition of fins.

6.5 Application of Fin Theory for Error Estimation in

Temperature Measurement

Temperature of a fluid flowing in a pipe is generally measured with a thermometer placed in a thermowell
welded radially or obliquely to the pipe wall. Thermowell is a thin tube, generally of a material of low thermal
conductivity, such as stainless steel, filled with oil, for better thermal contact with the thermometer bulb. See
Fig. 6.12. -

/Thermometer

anr

Thermowell, thickness = &

Fluid, ——» —_—
Tobge W |

FIGURE 6.12 Error estimation in temperature measurement

Let L = length of thermowell
d = diameter of thermowell
& = thickness of thermowell wall
T, = temperature at the root of thermowell, i.e. on the pipe surface
T, = temperature of the fluid flowing, and
T; = temperature measured by the thermometer
h, = heat transfer coefficient between the thermowell and the fluid.

If the temperature of a hot fluid flowing in the pipe is T,, obviously, the temperature indicated by the ther-
mometer, T, will not be equal to T, but less than T, because of heat loss along the wall of the thermowell from
its tip to the root (and, vice versa, for a cold fluid flowing in the pipe).

Qur aim is to estimate the error in the thermometer reading.
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We apply the fin theory. Considering the thermowell to be a fin protruding from the pipe wall, with an
insulated tip (i.e. no heat transfer from its tip}, we can write, from Eq. 6.7:

T(x)-T, cosh(m(L-x))

= ELLy 6-
T,-T, cos h(m-L) (67)
At the tip, i.e. at x=L T} =T,
Substituting ¥ =L in Eq. 6.7:
L-T __ 1 (a)
T,-T, cosh(mL)
And, the error in thermometer reading is given by:
T, - Th-Ta .{b)

27 cos h(m-L)
From Egq. b, we observe that to reduce the temperature error, we should have the factor 1/cos h{m.L) as
small as possible. To achieve this, looking at the graph of 1/cos h{m.L) vs. {(m.L) given in section 6.2.2, it is clear

that
ih'_P L
kA,

must be as large as possible.
This leads to the following conclusions:
(i) value of heat transfer coefficient, h should be large
(ii) value of thermal conductivity, k should be small

(iii) thermowell should be long and thin-walled. (thermowell may be placed obliquely inside the pipe, to
make it long).

Again, for the thermowell, treated as a fin, we have:

_[rP
M= A

and, L = zd for S<<d
A, mdé

. P 1

1.e. —_— = —
A, &

i.e. fin parameter, m does not depend upon thermowell pocket diameter, when the wall thickness is very smalt
compared to its diameter.
Exumple 6.9. The temperature of air in an air stream in a tube is measured by a thermometer placed in a protective well
filled with oil. The thermowell is made of steel tube of 1.5 mm thick sheet of length 120 mm. The thermal conductivity of
steel = 58.8 W/{mK). and k, = 23.3 W/(mK). If the air temperature recorded was 84°C, estimate the measurement error,
if the temperature at the base of the well was 40°C. M.U.]
Sofution. See Fig. Example 6.9.
Data:

L:=012m d:=0.0015 m k = 58.8 W/(mK) T, = 40°C T, = 84°C h, =233 W/(*C)

Let T, be the temperature of air flowing.
Let us first calculate fin parameter m:

o [EP
TV k-A
Again, -4 _1 (where, P is the perimeter, d is the diameter of th i)
" —_— = = e ., ertmerer, IS 1an ErmoteLt,
8 A T wdd 3 P eter of
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Thermometer
T,=40°C

Thermowell, thickness = &= 0.0015 m
k = 58.8 W/(mK)

e L=0.12m — T,

> h, =233W(mK)

T,=84°C

ie m: = L
- " Yks
or, m = 16.253 m™ (fin parameter m)

and, cos h(m-L) = 3.5869
Considering the thermowell as a fin with insulated end, we have:

TL — Tn _ 1

T,-T,  cosh(mL)
. 84-T, 1
ie. =—

40-T, 35869
or Ii= (3.5869 x 84) — 40

2.5869 _

ie. T, = 101.009°C (temperature of air flowing.)

Error in temperature measurement:
Actual temperature of air is 101.009°C, while recorded temperature is 84°C.

Le. T,- T, =17.009°C (error in temperature measurement)
T.-T .
or, ——— 100 = 16.839 (Percentage error in measurement of temperature = 16.8%.)
a
6.6 Summary

Fins are widely used in industry to enhance heat transfer from surfaces. In this chapter, first, we derived the
general differential equation governing the temperature distribution in a fin, from an energy balance on a
differential element of the fin. Subsequently, solution of this differential equation with different boundary
conditions was obiained to get temperature distribution in the fin. Once the temperature distribution is known,
heat transfer rate through the fin is easily calculated by applying Fourier's law. Four important cases considered
were:

Case (i): Infinitely long fin,

Case (ii): Fin insulated at its end (i.e. negligible heat loss from the end of the fin),

Case (iii): Fin losing heat from its end by convection, and

Case (iv): Fin with specified temperature at its two ends.

Performance of fins was discussed with reference to parameters such as fin efficiency and fin effectiveness;
concepts of thermal resistance of fins and total surface efficiency, or, area weighted fin efficiency of a fin array
was explained.

Graphs and tables for practically important fin geometries were presented.

Finally, application of fin theory to correction of error in temperature measurement was studied.
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In this text, in our study of heat conduction so far, one of the assumptions in our analysis was steady state
heat conduction, i.e. temperature at any given location in the solid was assumed to be constant and did not
change with time. In the next chapter, we shall study the cases of transient conduction, i.e. when the temperature
at a given location in the solid changes with time.

Questions

1.
2.

Explain why fins are widely used. Discuss a few commonly used types of fins.

‘Addition of fins may not necessarily increase the heat transfer from a surface; it may even decrease the heat
transfer'—comment on this statement.

Define ‘fin efficiency’ and ‘fin effectiveness’. Explain, as a corollary, why thin, closely spaced fins of a material
of good thermal conductivity are preferable.

Explain why fins are generally used on the gas side in a gas-to-liquid heat exchanger.

For an infinitely long fin, with usual notations, prove that heat dissipated is given by:

Qi = JHPkA, - 8,= Jh-Pk-A -(T,-T)

Using usual notations and starting from basics, derive and solve a differential equation for heat flow through a
moderately long pin fin (47/dx at x = L is zero) to get an expression for the non-dimensional temperature
distribution along the length of the fin as:

8(z) _ coshim(L- xh

a, cos hr{m-L)
and also show that heat transferred in the fin is given by:

Ciin = JH-P-k-A_ - 8,tan h(m-L).
A thin fin of length L, has its two ends attached to two parallel walls which have temperatures, T; and T,. The
fin loses heat by convection to ambient air at T,.. Obtain an analytical expression for the one dimensional tem-
perature distribution along the length of the fin.
The end of a very long cylindrical rod is atrached to a heated wall and its surface is in contact with a cold fluid.
if the rod diameter were doubled, by what percentage would the heat transfer rate change?

Problems

1.

A copper pin fin, 0.25 cm diameter, protrudes from a wall at 95°C into ambient air at 25°C. The heat transfer is
mainly by free convection with heat transfer coefficient, i = 10 W/ (m?K}. Calculate the heat loss assuming that
the fin is infinitely long. For copper, take k = 395 W/(mK).

Calculate the rate of heat loss from a rectangular fin of length 2 ¢m, on a plane wall. Thickness of fin is 2 mm
and its breadth is 20 cm. Take 8, = 200°C, h = 17.5 W/{m2K), k = 52.5 W/(mK). Assume that heat loss from the
tip is negligible. .

Aluminum square fins (0.5 mm x 0.5 mm} of 10 mm length are provided on the surface of an electronic device to
carry 45 mW of energy generated by the device. The temperature at the surface of the device should not exceed
80°C, while temperature of the surrounding medium is 40°C. Assume k for aluminium = 190 W/(mK), k = 12W/
(m?K). Find the number of fins required, neglecting heat loss from the end of the fin.

An aluminum fin, 0.5 mm squate and Icm long, is attached to a semiconductor device to provide additional
cooling. The base of the fin can be assumed to be at the inside temperature of 80°C. Find the cooling capacity
provided by the fin. Ambient temperature = 40°C, k = 177 W/(mK), k = 1244 W/ (m?K).

Ome end of a copper rod, 15 cm long and (.6 cm diameter, is connected to a wall at 200°C while the other end
protrudes into a room whose air temperature is 21°C. If the tip of the rod is insulated, estimate the heat lost by
the rod, assuming the heat transfer coefficient between its surface and surrounding air as 28 W/ (m%K). Also,
calculate the efficiency of the fin, Take k for copper = 370 W/(mK). State the assumptions made.

A cylinder 5 cm diameter and 1 m long, is provided with 12 longitudinal, straight fins of 1 mm thick and 2.5 cm
height. k of fin material is 75 W/(mK). Calculate the heat lost from the cylinder if the surface temperature of the
cylinder is 200°C and that of the surrounding is 40°C. Given: heat transfer coefficient between the cylinder and
fins and surrounding air = 25 W/ (mZK).

Circumferential fins of constant thickness of 1 mm (k = 190 W/(mK)}), are attached on a 50 mm OD pipe at a
pitch of 5 mm. Fin length is 20 mm. Wall temperature is 150°C. Convection heat transfer coefficient is 45 W/
{m2K). Determine heat flow rate from 1 m length of pipe. Compare the heat flow with fins to that without the
fins.
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10,

11.

12

13.

A hot plate (t m % 1 m}, at 150°C is to be cooled by attaching on its surface, 10,000 number of cylindrical, pin
fins of each, 3 mm diameter and 3 cm long. Surrounding air is at 25°C. Heat transfer coefficient between the fin
surfaces and the surroundings is 30 W/ (mQC). Determine:

(i) overall surface effectiveness

(ii} heat transfer rate, with the fins in place

(iii) heat transfer rate from the plate, if there were no fins

(iv) decrease in thermal resistance due to attaching the fins
An aluminium fins are fixed on one side (size: 1 m x 1 m}, of an electronic device to increase the heat
dissipation. Fins are of rectangular cross section, 0.2 cm thick and 3 ¢m long. There are 100 fins per metre.
Convection heat transfer coefficient for both the plate and the fins is 30 W/(m’K). Determine the percentage
increase in the rate of heat transfer due to attaching the fins.
An iron bar, 15 mm in diameter, spans the distance between two plates, 50 cm apart. Air at 25°C flows in the
space between the plates resulting in heat transfer coefficient of 15 W/(m’K). Calculate the heat transfer and
temperature at the middle of the bar, if the plates are maintained at 125°C each. For iron, k = 45 W/(mK).
Two ends of a 6 mm diameter copper rod {U-shaped) having & = 330 W/ (mK), are rigidly connected to a vertical
wall as shown in Fig. Problem 6.11. Wall temperature is constant at 100°C. Developed length of the rod is 50 cm
and is exposed to air at 30°C. Combined convective and radiative heat transfer coefficient is 30 W/ {m? K).
Calculate:

(i) the temperature at the centre of the rod

(ii) net heat transfer from the rod to air.

. D =0.006 m
T, = 100°C \
h = 30 W/(m'C)
7,=100°C /VT 2=30°C
i

o )
'

0.25m

FIGURE Problem 6.17  U-shaped rod, both ends fixed to a wall

A steel rod (k = 55 W/{mK)), of length 50 cm, diameter 2.5 cm, has its two ends maintained at 150°C and 60°C.
Ambient air, to which heat is dissipated by the rod, is at 25°C and the heat transfer coefficient is 20 W/ (rn2 K).
Determine:

(i} minimum temperature in the rod

(ii} temperature at the mid-point of the rod, and
(iii) heat transfer rates from the left and right ends.
A Hg-thermometer placed in a well filled with oil, is required to measure the temperature of compressed air
flowing in a pipe. The well is 14 cm long and is made of steel 1.5 mm thick. The temperature indicated by the
thermometer is 100°C. The pipe wall temperature is 50°C. The film coefficient outside the wall is 30W/ (m?C).
Estimate the % error in measurement of temperature of air. k for steel = 40W/(mC).
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CHAPTER

Transient Heat
Conduction

7.1 Introduction

In chapter 3, we derived the general differential equation for conduction and then applied it to problems of
increasing complexity, e.g. first, we studied heat transfer in simple geometries without heat generation and then
we studied heat transfer when there was internal heat generation. In all these problems, steady state heat transfer
was assumned, i.e. the temperature within the solid was only a function of position and did not depend on time,
i.e. mathematically, T = T(x, y, z). However, all the process equipments used in engineering practice, such as
boilers, heat exchangers, regenerators, etc. have to pass through an unsteady state in the beginning when the
process is started, and, they reach a steady state after sufficient time has elapsed. Or, as another example, a billet
being quenched in an oil bath, goes through temperature variations with both position and time before it attains
a steady state. Conduction heat transfer in such an unsteady state is known as transient heat conduction or,
unsteady state conduction, or time dependent conduction. Obviously, in transient conduction, temperature
depends not only on position in the solid, but also on time. So, mathematically, this can be written as T = T(x, v,
2, 1), where 7 represents the time coordinate.

Naturally, solutions for transient conduction problems are a little more complicated compared to steady
state analysis, since now, an additional parameter, namely time (7) is involved.

Typical examples of transient conduction occur in:

(i} heat exchangers

(ii} boiler tubes

(iii} cooling of cylinder heads in LC. engines

(iv) heat treatment of engineering components and quenching of ingots
(v} heating of electric irons

(vi} heating and cooling of buildings

(vii} freezing of foods, etc.

Two types of transient conduction may be identified:

{a} periodic heat flow problems, where the temperatures vary on a regular, periodic basis, e.g. in LC. engine
cylinders, alternate heating and cooling of earth during a 24 hr cycle (by sun) etc.
(b} non-periodic heat flow problems, where temperature varies in a non-linear manner with time.

To solve a given one-dimensional, transient conduction problem, one could start with one of the relevant
general differential equations discussed in chapter 3 and by solving it in conjunction with appropriate boundary
conditions, and get the temperature distribution as a function of position and time. For example, for one-
dimensional conduction, in Cartesian coordinates, we have:

T 14T

=== -without heat generation
dx®: o dr g )



